

www.elsevier.nl/locate/ejphar

5-Hydroxytryptamine induces transient Ca²⁺ influx through Ni²⁺-insensitive Ca²⁺ channels in rat vascular smooth muscle cells

Masahiko Hirafuji ^{a,*}, Fumito Kawahara ^a, Takashi Ebihara ^a, Akihiro Nezu ^b, Akihiko Tanimura ^b, Masaru Minami ^a

Abstract

The effects of Ni^{2+} , a non-selective cation channel inhibitor, on 5-hydroxytryptamine (5-HT)- and angiotensin II (Ang II)-induced intracellular Ca^{2+} dynamics in rat aortic smooth muscle cells were investigated. Ni^{2+} (1 mM) significantly inhibited the transient increase in intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$) induced by Ang II (100 nM) in aortic smooth muscle cells, as measured using fura-2. However, Ni^{2+} did not suppress the transient increase in Ca^{2+} influx induced by 5-HT (10 μ M), while significantly suppressed the sustained increase. Ca^{2+} influx evoked by high KCl (80 mM), thapsigargin (TG) (1 μ M) or depletion of intracellular Ca^{2+} store was almost completely suppressed by Ni^{2+} . Ni^{2+} had no effect on 5-HT-induced inositol triphosphate production and Ca^{2+} release from the intracellular store(s). These results suggest that 5-HT, but not Ang II, induces transient Ca^{2+} influx through Ni^{2+} -insensitive Ca^{2+} channels, which are distinguishable from the voltage-dependent or store-operated Ca^{2+} channels. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: 5-HT (5-hydroxytryptamine serotonin); Ca2+ influx; Ca2+ channel; Ni2+; Smooth muscle cell, vascular; Angiotensin II

1. Introduction

Intracellular Ca2+ concentration ([Ca2+]_i) in vascular smooth muscle cells plays a regulatory role as a second messenger in the mechanism of vasocontraction (see Karaki et al., 1997 for a review). A number of mechanisms regulate intracellular Ca2+ dynamics induced by various vasoactive agonists in vascular smooth muscle cells (see Himpens et al., 1995; Hughes, 1995 for reviews). Receptor stimulation by the agonists of vascular smooth muscle cells induces both the release of Ca2+ from intracellular stores and the influx of extracellular Ca2+ through Ca2+ channels on the plasma membrane. It has been well established that inositol 1,4,5-triphosphate (IP₃) induces the release of Ca2+ from sarcoplasmic reticulum, an intracellular Ca2+ store, in vascular smooth muscle cells (Himpens et al., 1995). However, the precise mechanisms involved in Ca²⁺ influx are largely unknown, though Ca²⁺

can enter the cell through both voltage-dependent Ca²⁺ channels and voltage-independent Ca²⁺. Although the classification and terminology are not yet established, the voltage-independent channels can be further subdivided into four channels based on the mode of activation (Fasolato et al., 1994; Felder et al., 1994; Hughes, 1995; Clementi and Meldolesi, 1996). Receptor stimulation by its agonist can induce Ca²⁺ influx through receptor-operated Ca²⁺ channels which are integral or in close physical association with the receptor (Von der Weid et al., 1993). The activation of a receptor can also cause channel opening through heterogeneous family of second messenger-operated channels which are mediated by some diffusible second messengers including Ca²⁺ itself (Wang et al., 1993), or through G protein-operated channels (Xiong et al., 1991). The depletion of Ca²⁺ from internal stores by pharmacological tools such as thapsigargin (TG) can induce Ca²⁺ influx through store-operated channel or capacitative Ca²⁺ entry pathway (Putney, 1990) in some cells including vascular smooth muscle cells (Casteels and Droogmans, 1981; Xuan et al., 1992).

a Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan

^b Department of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan Received 22 June 1999; accepted 23 July 1999

^{*} Corresponding author. Tel.: +81-1332-3-1211 ext. 3146; fax: +81-1332-3-1669; E-mail: hirafuji@hoku-iryo-u.ac.jp

In cardiovascular system, 5-hydroxytryptamine (5-HT) causes very strong smooth muscle contraction, which is considered to be associated with cardiovascular diseases such as hypertension or vasospasm (Frishman et al., 1995). 5-HT causes an increase in [Ca²⁺]i of smooth muscle cells via 5-HT₂ receptor by causing both the release of Ca²⁺ from intracellular stores and the influx of extracellular Ca²⁺ (Doyle et al., 1986; Kanaide et al., 1987; Hirafuji et al., 1998). One of the intracellular stores is the IP₃-sensitive store, since 5-HT increased IP₃ production in rat vascular smooth muscle cells (Doyle et al., 1986; Kanaide et al., 1987; Hirafuji et al., 1998). 5-HT-induced Ca²⁺ influx may occur through both voltage-independent and -dependent channels sensitive to L-type Ca²⁺ antagonist. However, the precise mechanism of 5-HT-induced Ca²⁺ influx is not yet fully defined. In the course of the study to clarify it, we were interested to examine the effect of Ni²⁺, a nonselective cation channel blocker (Fox et al., 1987; Hagiwara et al., 1988), on the intracellular Ca²⁺ dynamics stimulated by 5-HT, because the voltage-independent channels have different sensitivity and permeability to various divalent cations (Fasolato et al., 1994; Hughes and Schachter, 1994). In this paper, we demonstrate that Ni2+ is a useful pharmacological tool to distinguish a form of 5-HT receptor-mediated Ca2+ influx channels from the voltage-dependent or store-operated Ca²⁺ channels.

2. Materials and methods

2.1. Cell culture

Vascular smooth muscle cells were isolated from aortic media of male Wistar rats (6–7 weeks old) as described previously (Hirafuji et al., 1998). Briefly, the thoracic aortic media was incubated with collagenase (1.0 mg/ml) and elastase (0.5 mg/ml) for 90 min at 37°C. Cells were suspended in Dulbecco's modified Eagle medium containing 10% fetal calf serum, 100 U/ml penicillin and 100 µg/ml streptomycin. Cells were cultured in the medium for 6–8 days with medium change every 2–3 days, and then 2% fetal calf serum for 2 days to render them quiescent. Primary cultured cells were used throughout this study.

2.2. Measurement of intracellular $[Ca^{2+}]_{i}$

Intracellular $[{\rm Ca^{2}}^{+}]_{\rm i}$ was measured as described previously (Hirafuji and Shinoda, 1992; Hirafuji et al., 1998). Cells seeded and grown on coverglasses (8 \times 16 mm) were loaded with 5 μ M fura-2 acetoxymethyl ester for 45 min at room temperature in Hanks' balanced salt solution containing 0.1% bovine serum albumin and 10 mM HEPES (HBSS; pH 7.4). The fluorescence at 505 nm emission wavelength alternately excited at 340 and 380 nm was

measured in a fluorescence spectrophotometer (Hitachi F-4000, Japan). Cells were continuously perfused at 1 ml/min with HBSS, to which test drugs were added. $R_{\rm max}$, the maximal fluorescence ratio, was measured by exposing cells to 10 μ M ionomycin in the presence of 5 mM Ca²⁺, followed by perfusion with Ca²⁺-free HBSS containing 1 mM EGTA to obtain $R_{\rm min}$, the minimum ratio. The cells were finally exposed to 0.05% Triton X-100 to obtain the autofluorescence. After the subtraction of autofluorescence, $[{\rm Ca^{2+}}]_i$ was calibrated according to the equation of Grynkiewicz et al. (1985), assuming the $K_{\rm d}$ of the Ca²⁺-fura-2 interaction to be 225 nM in the cytosolic environment.

Ni²⁺ may quench the fura-2 fluorescence if permeated into the cells, giving artificial changes in [Ca²⁺]_i. However, asymmetrical changes in the emission fluorescence at two excitation wavelengths were not observed when cells were exposed to Ni²⁺ in the absence or the presence of stimuli.

2.3. Determination of inositol phosphates

Vascular smooth muscle cells grown in 35-mm culture dishes were incubated for 24 h in the culture medium containing 10 μ Ci/ml myo-[3 H]inositol. Cells were washed three times with HBSS and preincubated for 3 min at 37°C. The medium was then removed and replaced with 1 ml HBSS containing 10 μ M 5-HT. The reaction was stopped by adding 4% perchloric acid (final concentration) and chilled on ice for 30 min. The medium was then transferred to vials and centrifuged at $1600 \times g$. The supernatant was neutralized with KOH–HEPES. Inositol triphosphates (IP $_3$) were separated by chromatography using AG1-X8 resin as described previously (Tanimura et al., 1991).

2.4. Materials

Fetal calf serum, penicillin, streptomycin and Dulbecco's modified Eagle medium were obtained from Gibco; fura-2 acetoxymethyl ester, nickel chloride and HEPES from Dojin; ionomycin from Calbiochem; 5-HT creatinine sulfate, collagenase and elastase from Sigma; angiotensin II (Ang II) from Peptide Institute; TG from Research Biochemicals International; bovine serum albumin (fraction V) from Boehringer Mannheim; AG1-X8 resin from Bio-Rad; *myo*-[³H]inositol (s.a. 117 Ci/mmol) from Amersham.

2.5. Statistical analysis

Results are expressed as means \pm S.E. of replicate experiments. Statistical analysis of the results was performed using unpaired Student's *t*-test. *P* values less than 0.05 were considered as significant.

3. Results

3.1. Effects of Ni^{2+} on Ang II- and 5-HT-induced intracellular Ca^{2+} dynamics

Fig. 1A demonstrated representative tracings showing Ang II-induced intracellular Ca^{2+} dynamics in cultured rat vascular smooth muscle cells. Ang II at a maximal concentration of $0.1~\mu M$ induced a rapid and transient increase in $[Ca^{2+}]_i$, which was returned to the basal level within 5 min after the stimulation. Removal of extracellular Ca^{2+} (1.3 mM) decreased the basal level. Under this condition, Ang II caused a small and transient increase in $[Ca^{2+}]_i$. Likewise, the exposure of cells to 1 mM Ni^{2+} lowered the basal level, and Ang II caused a small transient increase in $[Ca^{2+}]_i$ in the presence of Ni^{2+} .

Fig. 1B demonstrated representative results showing 5-HT-induced intracellular Ca^{2+} dynamics. 5-HT at a maximal concentration of 10 μ M induced a rapid and transient elevation in $[Ca^{2+}]_i$, which was maximal by 1 min after the stimulation followed by the sustained increase. When extracellular Ca^{2+} was removed, the basal level of $[Ca^{2+}]_i$ lowered, and the small transient increase was observed in response to 5-HT. Exposure to 1 mM Ni^{2+} caused the decrease of the basal level as was the case for Ang II. However, in the presence of Ni^{2+} , 5-HT still

caused a transient increase in $[Ca^{2+}]_i$ comparable to the effect in the presence of extracellular Ca^{2+} , while the sustained increase after the transient increase was remarkably suppressed.

Fig. 2A and B summarized the effect of Ni^{2+} on $[Ca^{2+}]_i$ in rat aortic smooth muscle cells stimulated by 0.1 μ M Ang II and 10 μ M 5-HT. As shown in Fig. 2A, Ni^{2+} at 1 and 2 mM significantly inhibited the basal $[Ca^{2+}]_i$ before stimulation, the peak $[Ca^{2+}]_i$ induced by Ang II, and $[Ca^{2+}]_i$ at 5 min after the stimulation. In contrast, as shown in Fig. 3B, Ni^{2+} at 1 and 2 mM did not significantly inhibit the peak $[Ca^{2+}]_i$ induced by 5-HT, whereas significantly inhibited the basal level and the level at 5 min after the stimulation.

Fig. 3 demonstrated the effect of Ni^{2+} on the peak $[Ca^{2+}]_i$ as a function of 5-HT concentration. Ni^{2+} (1 mM) significantly inhibited $[Ca^{2+}]_i$ induced by 5-HT at concentrations lower than 0.1 μ M, whereas had no effect on $[Ca^{2+}]_i$ induced by 5-HT at concentrations higher than 1 μ M.

3.2. Effects of Ni²⁺ on KCl- and TG-induced intracellular Ca²⁺ dynamics

Fig. 4A demonstrated the effects of depolarizing concentration of KCl (80 mM) on intracellular Ca²⁺ dynamics

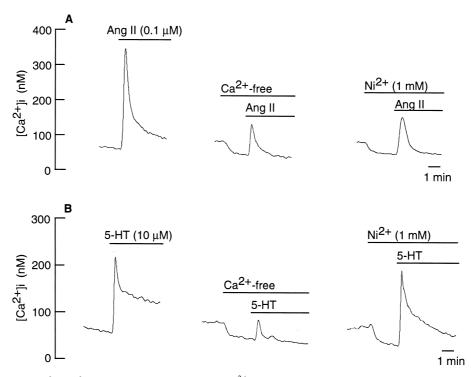


Fig. 1. Effect of Ni^{2+} on Ang II (Ang II)- and 5-HT-induced intracellular Ca^{2+} dynamics in rat aortic smooth muscle cells. Cells were stimulated with 0.1 μ M Ang II (A) or 10 μ M 5-HT (B) in HBSS containing 1.3 mM Ca^{2+} , or after exposure to Ca^{2+} -free HBSS (+1 mM EGTA) or HBSS containing 1 mM Ni^{2+} for 3 min. Representative tracings in an experiment of each agonist. HBSS: Hanks' balanced salt solution (pH 7.4) containing 10 mM HEPES and 0.1% bovine serum albumin.

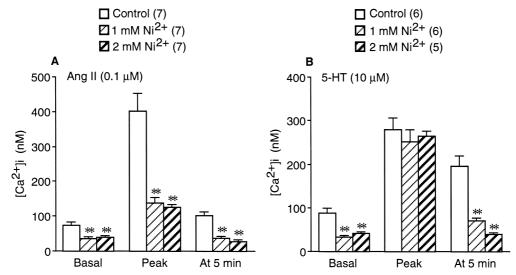


Fig. 2. Effect of Ni^{2+} on Ang II (Ang II)- and 5-HT-induced $[Ca^{2+}]_i$ in rat aortic smooth muscle cells. Cells were stimulated with 0.1 μ M Ang II (A) or 10 μ M 5-HT in the absence or the presence of 1 and 2 mM Ni^{2+} . Cells were exposed to Ni^{2+} 3 min before to and during the stimulation. Basal: the basal $[Ca^{2+}]_i$ before stimulation; Peak: the peak $[Ca^{2+}]_i$ after stimulation; After 5 min: $[Ca^{2+}]_i$ 5 min after stimulation. Each column represents mean \pm S.E. of (n) experiments. **P < 0.01 vs. each control.

in cultured rat aortic smooth muscle cells. KCl at 80 mM induced a transient increase in $[Ca^{2+}]_i$, which gradually returned to the basal level. This increase was completely suppressed when extracellular Ca^{2+} was removed. Exposure to 1 mM Ni²⁺ decreased the basal $[Ca^{2+}]_i$ level, and also completely suppressed the effect of KCl.

Fig. 4B demonstrated the effect of TG on intracellular Ca^{2+} dynamics. TG induced an immediate increase followed by a gradual and continuous increase in $[Ca^{2+}]_i$. When extracellular Ca^{2+} was removed, a small transient increase was observed in response to TG. When cells were stimulated with TG in the presence of 1 mM Ni^{2+} , the

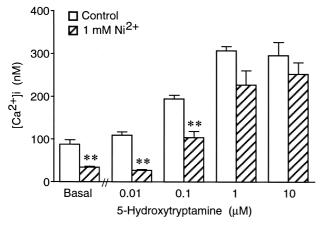


Fig. 3. Effect of Ni²⁺ on 5-HT-induced peak $[Ca^{2+}]_i$ in rat aortic smooth muscle cells. Cells were stimulated with various concentrations of 5-HT in the absence or the presence of 1 mM Ni²⁺. Cells were exposed to Ni²⁺ 3 min before to and during the stimulation. Each column represents mean \pm S.E. of five to six experiments. **P < 0.01 vs. each control.

same change in $[Ca^{2+}]_i$ to that obtained in the absence of extracellular Ca^{2+} was observed.

3.3. Effect of Ni^{2+} on Ca^{2+} influx evoked by internal store depletion

When cells were stimulated with Ang II or 5-HT in the absence of extracellular Ca^{2+} (1.3 mM), the transient Ca^{2+} mobilization from the internal stores was observed as demonstrated in Fig. 1. As demonstrated in Fig. 5, when cells were thereafter exposed again to the buffer containing 1.3 mM Ca^{2+} , a rapid Ca^{2+} influx into the cells was observed. Ni²⁺ significantly suppressed the increase in $[Ca^{2+}]_i$ induced by Ca^{2+} re-exposure in cells stimulated with both Ang II (from 127.0 ± 19.8 to 37.4 ± 2.9 nM, n = 5, p < 0.01) and 5-HT (from 133.7 ± 21.9 to 41.8 ± 4.9 nM, n = 5, p < 0.01).

3.4. Effects of Ni^{2+} on 5-HT-induced Ca^{2+} mobilization from internal stores

5-HT stimulation in the absence of extracellular Ca^{2+} (1.3 mM) induced Ca^{2+} mobilization from the internal store(s), as demonstrated in Fig. 1B. Ni^{2+} at 1 mM had effect on neither the basal $[Ca^{2+}]_i$ before stimulation, the peak $[Ca^{2+}]_i$ induced by 10 μ M 5-HT, nor $[Ca^{2+}]_i$ at 5 min after the stimulation (data not shown).

The effect of Ni²⁺ on 5-HT-induced phosphatidylinositol metabolism in aortic smooth muscle cells was also investigated. The stimulation with 5-HT at a concentration of 10 μ M for 1 min significantly increased the production of IP₃ from 71.2 \pm 13.5 to 192.0 \pm 28.2 dpm/dish (n = 4,

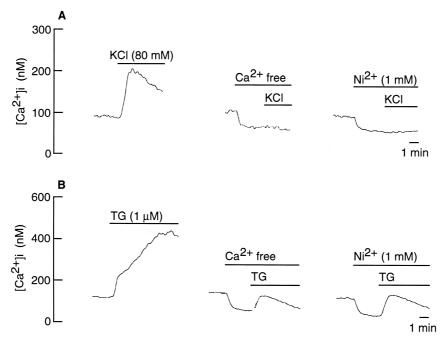


Fig. 4. Effect of Ni^{2+} on KCl- and TG-induced intracellular Ca^{2+} dynamics in rat aortic smooth muscle cells. Cells were stimulated with 80 mM KCl (A) or 1 μ M TG (B) in HBSS containing 1.3 mM Ca^{2+} , or after exposure to Ca^{2+} -free HBSS (+1 mM EGTA) or HBSS containing 1 mM Ni^{2+} for 3 min. Representative tracings in an experiment of each agent.

p < 0.01). The increasing effect of 5-HT was not significantly altered when cells were stimulated in the presence of 1 mM Ni²⁺ (from 74.2 \pm 9.4 to 160.4 \pm 24.9 dpm/dish, n = 4, p < 0.05) and in the absence of extracellular Ca²⁺ (from 77.9 \pm 6.6 to 167.2 \pm 26.6 dpm/dish, n = 4, p < 0.05), although slightly suppressed.

4. Discussion

5-HT induces a biphasic changes in intracellular Ca²⁺ dynamics, i.e., a transient peak increase followed by a smaller sustained increase in [Ca²⁺]_i in rat aortic smooth muscle cells in primary culture (Hirafuji et al., 1998). The

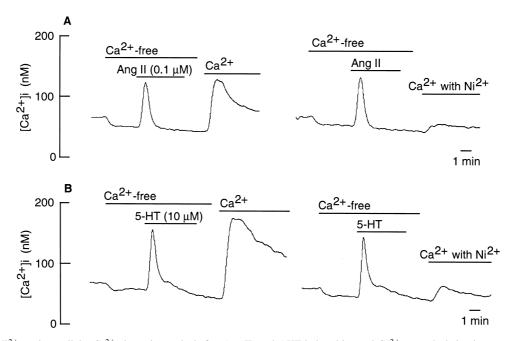


Fig. 5. Effect of Ni^{2+} on intracellular Ca^{2+} dynamics evoked after Ang II- and 5-HT-induced internal Ca^{2+} store depletion in rat aortic smooth muscle cells. Cells were stimulated with 0.1 μ M Ang II (A) or 10 μ M 5-HT (B) in the absence of extracellular Ca^{2+} (1.3 mM), and then re-exposed to HBSS containing Ca^{2+} without (left) or with (right) 1 mM Ni^{2+} . Representative tracings of an experiment of each agonist.

effect of 5-HT is mediated via 5-HT₂ receptor subtypes, and accompanied by the production of intracellular IP₃ (Doyle et al., 1986; Kanaide et al., 1987; Hirafuji et al., 1998). 5-HT induced a smaller transient increase in the absence of extracellular Ca²⁺, indicating that 5-HT-induced Ca2+ transient is due to the influx of extracellular Ca2+ as well as the mobilization of Ca2+ from the intracellular stores such as IP3-sensitive store. However, the 5-HT-induced Ca2+ influx pathways are still unclear. Diltiazem, a blocker of L-type Ca²⁺ channel, at 1 µM did not suppress the 5-HT-induced Ca²⁺ transient, and only partially suppressed even at a high concentration of 10 µM (Hirafuji et al., 1998). Similar result has been obtained with nifedipine, another L-type Ca2+ channel blocker (Capponi et al., 1987). Therefore, it is likely that 5-HT induces a transient Ca²⁺ influx mainly through voltage-independent Ca²⁺ channels.

Ni²⁺ is known as a non-selective cation channel blocker, and inhibits voltage-dependent T-type Ca²⁺ channels at lower concentrations, and additionally L-type channels and Na⁺/Ca²⁺ exchange at higher concentrations (Fox et al., 1987; Hagiwara et al., 1988). Both type of Ca²⁺ channels has been shown to be present in rat aortic smooth muscle cells, by using the whole voltage-clamp method (Hirakawa et al., 1995). In the course of the study to clarify the pathways for 5-HT-induced transient Ca²⁺ influx in vascular smooth muscle cells, we were interested to examine the effect of Ni2+ on the Ca2+ influx. Exposure of cells to depolarizing concentration of KCl at 80 mM induced a gradual increase in [Ca²⁺]_i. TG induced an immediate increase followed by a gradual continuous increase in [Ca²⁺]_i. When cells were exposed to the depolarizing concentration of KCl and TG in the presence of 1 mM Ni²⁺, the intracellular Ca²⁺ dynamics observed were similar to those observed in the absence of extracellular Ca²⁺. TG, an inhibitor of sarcoplasmic reticulum Ca²⁺-ATPase, is known as a pharmacological tool to induce Ca²⁺ influx through store-operated Ca²⁺ channels, though partially through L-type Ca²⁺ channel blocker-sensitive channels (Xuan et al., 1992). Ca²⁺ influx through store-operated Ca²⁺ channels was also evoked when cells were exposed to the buffer containing Ca2+ following the stimulation with Ang II or 5-HT in the absence of extracellular Ca²⁺. Ni²⁺ also significantly inhibited these Ca²⁺ influxes. Therefore, it is obvious that Ni²⁺ inhibit Ca²⁺ influx through store-operated Ca²⁺ channels as well as the voltage-dependent channels as a cation channel blocker in vascular smooth muscle cells.

The present study also indicated that intracellular Ca^{2+} dynamics induced by a maximal concentration (0.1 μ M) of Ang II in the presence of Ni^{2+} was similar to that induced in the absence of extracellular Ca^{2+} . Ang II induced extracellular Ca^{2+} influx as well as Ca^{2+} mobilization from intracellular stores. Previous studies have indicated that Ang II stimulates voltage-dependent Ca^{2+} channels in vascular smooth muscle cells, (Ohya and Sperelakis, 1991;

Morel et al., 1996). Therefore, these results suggest that Ang II-induced Ca^{2+} transient is largely through Ni^{2+} -sensitive channels such as voltage-dependent or store-operated Ca^{2+} channels. Since the sustained increase induced by 5-HT was significantly suppressed by Ni^{2+} , it is mainly due to Ca^{2+} influx through these Ca^{2+} channels as well. Vasopressin and endothelin receptor stimulations have been shown to promote Ca^{2+} influx mainly through the non-L-type and receptor-mediated Ca^{2+} entry pathway, which is inhibited by Ni^{2+} in cultured A10 smooth muscle cells (Simpson et al., 1990).

However, in contrast to the case of Ang II, vasopressin or endothelin, the Ca2+ transient induced by 5-HT was not inhibited by Ni²⁺. Therefore, it could be due to Ca²⁺ influx through Ni2+-insensitive Ca2+ channels other than L-type or store-operated Ca2+ channels, in addition to Ca²⁺ mobilization from intracellular Ca²⁺ stores. The higher concentration of 5-HT is used, the more contribution of the Ni²⁺-insensitive channel to the Ca²⁺ influx was observed. Consistent to our results, the transient rise in [Ca²⁺]; evoked by 5-HT has been shown to be independent of the entry of Ca2+ through voltage-sensitive Ca2+ channels in rat aortic smooth muscle cells (Capponi et al., 1987) and rat cerebrovascular smooth muscle cells (Wang et al., 1991). Na⁺/Ca²⁺ exchange as well as plasma membrane Ca²⁺-ATPase is important for intracellular Ca²⁺ extrusion process in vascular smooth muscle cells (Karaki et al., 1997). The Ca²⁺ mobilization from intracellular stores is at least in part through IP₃-sensitive store (Doyle et al., 1986; Kanaide et al., 1987; Hirafuji et al., 1998). The levels of IP₃ produced by 5-HT stimulation under the condition with and without extracellular Ca²⁺, and in the presence of Ni²⁺ were almost the same. Further, Ni²⁺ had no effect on the Ca²⁺ transient induced by 5-HT in the absence of extracellular Ca²⁺. Therefore, it is ruled out the possibility that 5-HT-induced Ca²⁺ transient in the presence of Ni²⁺ is due to altered Ca²⁺ release from the intracellular store(s) or the inhibition of Na⁺/Ca²⁺ exchange.

Several mechanisms that activate the voltage-independent Ca²⁺ channels have been reported. Although their classification and terminology are not yet established, the voltage-independent channels are usually subdivided into four types: receptor-operated channel, second messengeroperated channel, G protein-operated channel, and storeoperated channel (Fasolato et al., 1994; Felder et al., 1994; Hughes, 1995; Clementi and Meldolesi, 1996). All these types of Ca²⁺ channels seems to be present in vascular smooth muscle cells (Hughes, 1995). In endothelial cells, pharmacological evidences indicate that the Ca²⁺ influx pathway activated by receptor agonist is indistinguishable from store-operated Ca²⁺ channels (Schilling et al., 1992), while others suggested that these two pathways are distinguishable because of differences in the permeability to Mn²⁺ and the sensitivity to SKF 96365 (1-[3-(4-methoxyphenyl) propoxyl]-1-(4-methoxyphenyl)ethyl-1 *H*-imidasole HCl), a putative inhibitor of receptor-operated Ca²⁺ channels (Li and Van Breemen, 1996). Our results indicated that Ni²⁺-insensitive channel activated by 5-HT receptor stimulation is distinguishable from store-operated Ca²⁺ channels in vascular smooth muscle cells.

The functional roles of voltage-independent Ca²⁺ channels in the regulation of vascular smooth muscle contraction are still unclear, although the sustained Ca²⁺ influx through the voltage-dependent channels is necessary for the maintenance of contraction in many cases (Karaki et al., 1997). Ca²⁺ influx through the Ni²⁺-insensitive Ca²⁺ channels seems to be not directly linked to the contraction, because our preliminary experiments showed that Ni²⁺ at 2 mM completely suppressed the 5-HT-induced tension development of rat aortic strips (Kawahara et al., 1998), while had no effect on Ca2+ transient as demonstrated here. It is possible that 5-HT stimulation induces the opening of the Ni²⁺-insensitive channels that facilitate depolarization and subsequent gating of the L-type channels. It can also induce Ca²⁺ influx through store-operated Ca²⁺ channels as a consequence of phosphatidylinositol hydrolysis. Protein kinase C can positively regulate the activation of L-type Ca2+ channels by 5-HT stimulation (Hirakawa et al., 1995; Hirafuji et al., 1998), and induce Ca²⁺ sensitization of contractile elements (Karaki et al., 1997). Elevation of intracellular Ca²⁺ may further induce Ca²⁺-induced Ca²⁺ release from the ryanodine-sensitive stores (Saida and Van Breemen, 1983; Morel et al., 1996).

In conclusion, the present study suggests that 5-HT induces transient Ca2+ influx through Ni2+-insensitive Ca²⁺ channels, which are distinguishable from the voltage-dependent or store-operated Ca²⁺ channels. Since this effect is mediated via 5-HT₂ receptor subtype coupled to a G protein, the Ni²⁺-insensitive channel could be either or both of second messenger-operated or G protein-operated Ca²⁺ channels. The second messenger-operated channels appear to comprise a heterogeneous family of channels, regulated by a variety of second messengers such as IP₃, inositol tetraphosphates (IP₄), cyclic GMP, protein kinase C or Ca²⁺ itself (Clementi and Meldolesi, 1996). Our results indicate that Ni²⁺ is a useful pharmacological tool to further investigate the nature and the regulatory mechanism of receptor-mediated Ca²⁺ influx pathway in 5-HTstimulated vascular smooth muscle cells.

Acknowledgements

This work was supported in part by Grant-in-Aid for Scientific Research (No. 09672244), and by the High Technology Research Program from the Ministry of Education, Science, Sports and Culture, Japan.

References

- Capponi, A.P., Lew, P.D., Vallotton, M.B., 1987. Effect of serotonin on cytosolic free calcium in adrenal glomerulosa and vascular smooth muscle cells. Eur. J. Pharmacol. 144, 53–60.
- Casteels, R., Droogmans, G., 1981. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J. Physiol. 317, 263–279.
- Clementi, E., Meldolesi, J., 1996. Pharmacological and functional properties of voltage-independent Ca²⁺ channels. Cell Calcium 19, 269–279.
- Doyle, V.M., Creba, J.A., Ruegg, U.T., Hoyer, D., 1986. Serotonin increases the production of inositol phosphates and mobilises calcium via the 5-HT₂ receptor in A7r5 smooth muscle cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 333, 98–103.
- Fasolato, C., Innocenti, B., Pozzan, T., 1994. Receptor-activated Ca²⁺ influx: how many mechanisms for how many channels?. Trends Pharmacol. Sci. 15, 77–83.
- Felder, C.C., Singer-Lahat, D., Mathes, C., 1994. Voltage-independent calcium channels. Regulation by receptors and intracellular calcium stores. Biochem. Pharmacol. 48, 1997–2004.
- Fox, A.P., Nowycky, M., Tsien, R.W., 1987. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J. Physiol. 394, 149–172.
- Frishman, W.H., Huberfeld, S., Okin, S., Wang, Y.H., Kumar, A., Shareef, B., 1995. Serotonin and serotonin antagonism in cardiovascular and non-cardiovascular disease. J. Clin. Pharmacol. 35, 541–572.
- Grynkiewicz, G., Poenie, M., Tsien, R.Y., 1985. A new generation of calcium indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.
- Hagiwara, N., Irisawa, H., Kameyama, M., 1988. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J. Physiol. 395, 233–253.
- Himpens, B., Missiaen, L., Casteels, R., 1995. Ca²⁺ homeostasis in vascular smooth muscle. J. Vasc. Res. 32, 207–219.
- Hirafuji, M., Shinoda, H., 1992. Antagonism of platelet-activating factorinduced increase in cytosolic calcium concentration in human endothelial cells. Jpn. J. Pharmacol. 58, 231–241.
- Hirafuji, M., Nezu, A., Kanai, Y., Ebihara, T., Kawahara, F., Tanimura, A., Minami, M., 1998. Effect of 5-hydroxytryptamine on intracellular calcium dynamics in cultured rat vascular smooth muscle cells. Res. Commun. Mol. Pathol. Pharmacol. 99, 305–319.
- Hirakawa, Y., Kuga, T., Kobayashi, S., Kanaide, H., Takeshita, A., 1995.
 Dual regulation of L-type Ca²⁺ channels by serotonin 2 receptor stimulation in vascular smooth muscle cells. Am. J. Physiol. 268, H544–H549.
- Hughes, A.D., 1995. Calcium channels in vascular smooth muscle cells. J. Vasc. Res. 32, 353–370.
- Hughes, A.D., Schachter, M., 1994. Multiple pathways for entry of calcium and other divalent cations in a vascular smooth muscle cell line (A7r5). Cell Calcium 15, 317–330.
- Kanaide, H., Hasegawa, M., Kobayashi, S., Nakamura, M., 1987. Serotonin-induced cytosolic free calcium transients in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 143, 532–538
- Karaki, H., Ozaki, H., Hori, M., Mitsui-Saito, M., Amano, K., Harada, K., Miyamoto, S., Nakazawa, H., Won, K.-J., Sato, K., 1997. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev. 49, 157–230.
- Kawahara, F., Hirafuji, M., Ebihara, T., Minami, M., 1998. Role of Ni²⁺-insensitive calcium channel in aortic smooth muscle contraction induced by 5-HT. Jpn. J. Pharmacol. 76, 214P, Suppl. I.
- Li, L., Van Breemen, C., 1996. Agonist- and CPA-induced elevation of cytoplasmic free Ca²⁺ in intact valvular endothelium of rabbits. Am. J. Physiol. 270, H837–H848.
- Morel, J.L., Macrez-Leprêtre, N., Mironneau, J., 1996. Angiotensin II-

- activated Ca²⁺ entry-induced release of Ca²⁺ from intracellular stores in rat portal vein myocytes. Br. J. Pharmacol. 118, 73–78.
- Ohya, Y., Sperelakis, N., 1991. Involvement of a GTP-binding protein in stimulating action of angiotensin-II on calcium channels in vascular smooth muscle cells. Circ. Res. 68, 763–773.
- Putney, J.W. Jr., 1990. Capacitative calcium entry revisited. Cell Calcium 7, 611–624.
- Saida, K., Van Breemen, C., 1983. Ca²⁺-induced Ca²⁺ release mechanism mediated by norepinephrine in vascular smooth muscle. Pfluegers Arch. 397, 166–167.
- Schilling, W.P., Cabello, O.A., Rajan, L., 1992. Depletion of the inositol 1,4,5-triphosphate-sensitive intracellular Ca²⁺ store in vascular endothelial cells activates the agonist-sensitive Ca²⁺-influx pathway. Biochem. J. 248, 521–530.
- Simpson, A.W.M., Stampfl, A., Ashley, C.C., 1990. Evidence for receptor-mediated bivalent-cation entry in A10 vascular smooth-muscle cells. Biochem. J. 267, 277–280.
- Tanimura, A., Matsumoto, Y., Tojyo, Y., 1991. Mastoparan increases

- membrane permeability in rat parotid cells independently of action on G-proteins. Biochem. Biophys. Res. Commun. 177, 802–808.
- Von der Weid, P.-Y., Serebryakov, V.N., Orallo, F., Bergmann, C., Snetkov, V.A., Takeda, K., 1993. Effects of ATP on cultured smooth muscle cells from rat aorta. Br. J. Pharmacol. 108, 638–645.
- Wang, W., Baimbridge, K.G., Mathers, D.A., 1991. Effect of serotonin on intracellular free calcium of rat cerebrovascular smooth muscle cells in culture. Can. J. Physiol. Pharmacol. 69, 393–399.
- Wang, Q., Hogg, R.C., Large, W.A., 1993. A monovalent ion-selective cation current activated by noradrenaline in smooth muscle cells isolated from rabbit ear artery. Pfluegers Arch. 423, 28–33.
- Xiong, Z., Kitamura, K., Kuriyama, H., 1991. ATP activates cationic currents and modulates the calcium current through GTP-binding protein in rabbit portal vein. J. Physiol. 440, 143–165.
- Xuan, Y.-T., Wang, O.L., Whorton, A.R., 1992. Thapsigargin stimulates calcium entry in vascular smooth muscle cells: nicardipine-sensitive and -insensitive pathway. Am. J. Physiol. 262, C1258–C1265.